rust_dsa/toposort.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
use std::collections::{HashMap, HashSet};
use std::hash::Hash;
use crate::DiGraph;
/// Returns a [topological sort](http://en.wikipedia.org/wiki/Topological_sorting)
/// of the graph, if one exists.
///
/// If the graph contains one or more directed cycles, `None` is returned.
///
/// # Example
/// ```
/// use rust_dsa::{DiGraph, topological_sort};
///
/// // +---+ +---+ +---+
/// // |'a'| ---> |'b'| ---> |'c'|
/// // +---+ +---+ +---+
/// let no_cycle = DiGraph::from([('a', 'b', ()), ('b', 'c', ())]);
///
/// assert_eq!(
/// topological_sort(&no_cycle),
/// Some(vec![&'a', &'b', &'c'])
/// );
///
///
/// // +---+ +---+
/// // | 1 | ---> | 2 |
/// // +---+ +---+
/// // ^ |
/// // | v
/// // | +---+ +---+
/// // +------- | 3 | ---> | 4 |
/// // +---+ +---+
/// let with_cycle = DiGraph::from([
/// (1, 2, ()),
/// (2, 3, ()),
/// (3, 4, ()),
/// (3, 1, ()),
/// ]);
///
/// // `with_cycle` contains a cycle so `topological_sort` returns `None`.
/// assert_eq!(
/// topological_sort(&with_cycle),
/// None
/// );
///
/// use rust_dsa::is_topological_sort;
///
/// let big_graph = DiGraph::from([
/// (1, 2, ()),
/// (2, 3, ()),
/// (4, 3, ()),
/// (3, 5, ()),
/// (5, 6, ()),
/// (6, 7, ()),
/// (7, 8, ()),
/// (5, 9, ()),
/// (9, 10, ()),
/// (5, 10, ()),
/// (10, 11, ()),
/// (10, 8, ()),
/// (5, 12, ()),
/// (12, 13, ()),
/// (12, 14, ()),
/// (12, 8, ()),
/// (8, 15, ()),
/// ]);
///
/// // `big_graph` is acyclic.
/// let sort = topological_sort(&big_graph).unwrap();
///
/// assert!(is_topological_sort(&big_graph, &sort));
/// ```
///
/// # Runtime complexity
/// This function implements [Kahn's algorithm](https://en.wikipedia.org/wiki/Topological_sorting#Kahn's_algorithm),
/// so it runs in *O*(*N* + *E*) time where *N* is the number of nodes and *E* is the number of edges.
pub fn topological_sort<N, E>(graph: &DiGraph<N, E>) -> Option<Vec<&N>>
where
N: Hash + Eq,
{
let mut sorted = Vec::new();
let mut neighbor_map = get_neighbor_map(graph);
let mut indegrees = get_indegrees(&neighbor_map);
let mut indegree_zero: Vec<_> = indegrees
.iter()
.filter(|(_, &count)| count == 0)
.map(|(node, _)| *node)
.collect();
while let Some(node) = indegree_zero.pop() {
sorted.push(node);
for neighbor in neighbor_map[node].clone() {
neighbor_map.get_mut(node).unwrap().remove(neighbor);
*indegrees.get_mut(neighbor).unwrap() -= 1;
if indegrees[neighbor] == 0 {
indegree_zero.push(neighbor);
}
}
}
if indegrees.into_values().all(|indegree| indegree == 0) {
Some(sorted)
} else {
None
}
}
fn get_neighbor_map<N, E>(graph: &DiGraph<N, E>) -> HashMap<&N, HashSet<&N>>
where
N: Hash + Eq,
{
graph
.into_iter()
.map(|node| (node, graph.neighbors_of(node).map(|(n, _)| n).collect()))
.collect()
}
fn get_indegrees<'a, N>(neighbor_map: &HashMap<&'a N, HashSet<&'a N>>) -> HashMap<&'a N, usize>
where
N: Hash + Eq,
{
let mut indegrees: HashMap<_, _> = neighbor_map
.keys()
.cloned()
.zip(std::iter::repeat(0))
.collect();
for neighbors in neighbor_map.values() {
for neighbor in neighbors {
*indegrees.get_mut(neighbor).unwrap() += 1;
}
}
indegrees
}
/// Returns `true` if the ordering is a topological sort for the graph.
///
/// Returns `false` if the ordering is *not* a topological sort or if the graph contains cycles.
///
/// # Example
/// ```
/// use rust_dsa::{DiGraph, is_topological_sort};
///
/// // +---+ +---+ +---+
/// // |'a'| ---> |'b'| ---> |'c'|
/// // +---+ +---+ +---+
/// let graph = DiGraph::from([('a', 'b', ()), ('b', 'c', ())]);
///
/// assert!(is_topological_sort(
/// &graph,
/// &[&'a', &'b', &'c']
/// ));
///
/// assert!(!is_topological_sort(
/// &graph,
/// &[&'b', &'a', &'c']
/// ));
///
/// assert!(!is_topological_sort(
/// &graph,
/// &[&'a', &'b']
/// ));
/// ```
pub fn is_topological_sort<N, E>(graph: &DiGraph<N, E>, sort: &[&N]) -> bool
where
N: Hash + Eq,
{
if sort.len() > graph.len() {
return false;
}
let sort_inv: HashMap<_, _> = sort
.iter()
.enumerate()
.map(|(i, node)| (*node, i))
.collect();
for node in graph.iter() {
if !sort_inv.contains_key(node) {
return false;
}
}
for (from, to, _) in graph.edges() {
if sort_inv[from] > sort_inv[to] {
return false;
}
}
true
}