rust_dsa/
medianheap.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
use std::cmp::{Ordering, Reverse};
use std::collections::BinaryHeap;
use std::mem;

/// A data structure for efficiently calculating a running median.
///
/// # Example
/// ```
/// use rust_dsa::{MedianHeap, Median};
///
/// // First, we create a new heap.
/// let mut heap = MedianHeap::new();
///
/// // Then we can add values in any order.
/// heap.insert(4);
/// heap.insert(1);
/// heap.insert(3);
/// heap.insert(6);
/// heap.insert(2);
///
/// // We can get the median value.
/// assert_eq!(heap.median(), Some(Median::One(&3)));
///
/// heap.insert(9);
///
/// // If the heap size is even, there are two medians.
/// assert_eq!(heap.median(), Some(Median::Two(&3, &4)));
///
/// // We can pop the median value.
/// assert_eq!(heap.pop(), Some(3));
/// assert_eq!(heap.pop(), Some(4));
///
/// // And we can add values from an iterator.
/// heap.extend(3..8);
///
/// assert_eq!(heap.median(), Some(Median::One(&5)));
/// assert_eq!(heap.len(), 9);
/// ```
///
/// # Runtime complexity
///
/// | Operation              | Runtime Complexity |
/// | ---------------------- | ------------------ |
/// | [`MedianHeap::insert`] | *O*(log *n*)       |
/// | [`MedianHeap::median`] | *O*(1)             |
/// | [`MedianHeap::pop`]    | *O*(log *n*)       |
#[derive(Clone)]
pub struct MedianHeap<T> {
    low_median: Option<T>,
    high_median: Option<T>,
    low: BinaryHeap<T>,
    high: BinaryHeap<Reverse<T>>,
}

impl<T> MedianHeap<T> {
    // Creates a new heap.
    pub fn new() -> Self
    where
        T: Ord,
    {
        MedianHeap {
            low_median: None,
            high_median: None,
            low: BinaryHeap::new(),
            high: BinaryHeap::new(),
        }
    }

    /// Inserts a new value into the heap.
    ///
    /// # Example
    /// ```
    /// use rust_dsa::{Median, MedianHeap};
    ///
    /// let mut heap = MedianHeap::new();
    ///
    /// heap.insert(5);
    /// heap.insert(2);
    ///
    /// assert_eq!(heap.median(), Some(Median::Two(&2, &5)));
    ///
    /// heap.insert(3);
    ///
    /// assert_eq!(heap.median(), Some(Median::One(&3)));
    /// ```
    pub fn insert(&mut self, value: T)
    where
        T: Ord,
    {
        match (&self.low_median, &self.high_median) {
            (None, None) => self.low_median = Some(value),
            (Some(median), None) => match value.cmp(median) {
                Ordering::Less => {
                    if self.low.peek().map_or(false, |peek| &value < peek) {
                        mem::swap(&mut self.low_median, &mut self.high_median);
                        self.low_median = self.low.pop();
                        self.low.push(value);
                    } else {
                        let old_median = mem::replace(&mut self.low_median, Some(value));
                        self.high_median = old_median;
                    }
                }
                Ordering::Equal => self.high_median = Some(value),
                Ordering::Greater => {
                    if self.high.peek().map_or(false, |peek| value > peek.0) {
                        self.high_median = self.high.pop().map(|v| v.0);
                        self.high.push(Reverse(value));
                    } else {
                        self.high_median = Some(value);
                    }
                }
            },
            (Some(low), Some(high)) => {
                if &value < low {
                    self.low.push(value);
                    self.high.push(Reverse(self.high_median.take().unwrap()));
                } else if &value > high {
                    let old_low = mem::replace(&mut self.low_median, self.high_median.take());
                    self.low.push(old_low.unwrap());
                    self.high.push(Reverse(value));
                } else {
                    let old_low = mem::replace(&mut self.low_median, Some(value));
                    let old_high = self.high_median.take();
                    self.low.push(old_low.unwrap());
                    self.high.push(Reverse(old_high.unwrap()));
                }
            }
            (None, Some(_)) => unreachable!(),
        }
    }

    /// Pops the median element from the heap.
    ///
    /// If there are two median values (i.e., [`MedianHeap::median`] would
    /// return [`Median::Two`]), then this function returns the *smaller* of
    /// the two values.
    ///
    /// # Example
    /// ```
    /// use rust_dsa::MedianHeap;
    ///
    /// let mut heap: MedianHeap<_> = "acb".chars().collect();
    ///
    /// assert_eq!(heap.pop(), Some('b'));
    /// assert_eq!(heap.pop(), Some('a'));
    /// assert_eq!(heap.pop(), Some('c'));
    /// assert_eq!(heap.pop(), None);
    /// ```
    pub fn pop(&mut self) -> Option<T>
    where
        T: Ord,
    {
        match (self.low_median.is_some(), self.high_median.is_some()) {
            (false, false) => None,
            (true, false) => {
                let result = self.low_median.take();
                self.low_median = self.low.pop();
                self.high_median = self.high.pop().map(|v| v.0);
                result
            }
            (true, true) => mem::replace(&mut self.low_median, self.high_median.take()),
            (false, true) => unreachable!(),
        }
    }

    /// Returns one or two median values in the heap, or `None` if the heap is empty.
    ///
    /// # Example
    /// ```
    /// use rust_dsa::{Median, MedianHeap};
    ///
    /// let mut heap = MedianHeap::from([13, 8, 5, 3, 2, 1, 1]);
    /// assert_eq!(heap.median(), Some(Median::One(&3)));
    ///
    /// heap.pop();
    /// assert_eq!(heap.median(), Some(Median::Two(&2, &5)));
    ///
    /// heap.clear();
    /// assert_eq!(heap.median(), None);
    /// ```
    pub fn median(&self) -> Option<Median<'_, T>> {
        match (&self.low_median, &self.high_median) {
            (None, None) => None,
            (Some(median), None) => Some(Median::One(median)),
            (Some(low), Some(high)) => Some(Median::Two(low, high)),
            (None, Some(_)) => unreachable!(),
        }
    }

    /// Returns the number of elements in the heap.
    ///
    /// # Example
    /// ```
    /// use rust_dsa::MedianHeap;
    ///
    /// let mut heap: MedianHeap<_> = "abcdefgh".chars().collect();
    /// assert_eq!(heap.len(), 8);
    ///
    /// heap.extend("xyz".chars());
    /// assert_eq!(heap.len(), 11);
    /// ```
    pub fn len(&self) -> usize {
        usize::from(self.low_median.is_some())
            + usize::from(self.high_median.is_some())
            + self.low.len()
            + self.high.len()
    }

    /// Returns `true` if the heap is empty.
    ///
    /// # Example
    /// ```
    /// use rust_dsa::MedianHeap;
    ///
    /// let mut heap = MedianHeap::from([1, 2, 3]);
    /// assert!(!heap.is_empty());
    ///
    /// heap.clear();
    /// assert!(heap.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Clears the heap.
    ///
    /// # Example
    /// ```
    /// use rust_dsa::MedianHeap;
    ///
    /// let mut heap = MedianHeap::from(["foo", "bar", "baz"]);
    /// assert!(!heap.is_empty());
    ///
    /// heap.clear();
    /// assert!(heap.is_empty());
    /// ```
    pub fn clear(&mut self) {
        self.low_median = None;
        self.high_median = None;
        self.low.clear();
        self.high.clear();
    }
}

/// An enum representing the median in a [`MedianHeap`].
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
pub enum Median<'a, T> {
    One(&'a T),
    Two(&'a T, &'a T),
}

impl<T> FromIterator<T> for MedianHeap<T>
where
    T: Ord,
{
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        let mut heap = MedianHeap::new();
        for value in iter {
            heap.insert(value);
        }
        heap
    }
}

impl<T, const N: usize> From<[T; N]> for MedianHeap<T>
where
    T: Ord,
{
    fn from(array: [T; N]) -> Self {
        array.into_iter().collect()
    }
}

impl<T> Extend<T> for MedianHeap<T>
where
    T: Ord,
{
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        for value in iter {
            self.insert(value);
        }
    }
}

impl<T> Default for MedianHeap<T>
where
    T: Ord,
{
    fn default() -> Self {
        MedianHeap::new()
    }
}