rust_dsa/
heap.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/// A [priority queue](http://en.wikipedia.org/wiki/Priority_queue) implementation
/// backed by a [binary heap](https://en.wikipedia.org/wiki/Binary_heap).
///
/// [`BinaryHeap::pop`] removes the *smallest* item.
///
/// # Example
///
/// ```
/// use rust_dsa::BinaryHeap;
///
/// // First, we create a new heap.
/// let mut heap = BinaryHeap::new();
///
/// // Then we can add items in any order.
/// heap.insert(4);
/// heap.insert(1);
/// heap.insert(3);
///
/// // We can peek at the minimum item.
/// assert_eq!(heap.peek(), Some(&1));
///
/// // And pop them off in ascending order.
/// assert_eq!(heap.pop(), Some(1));
/// assert_eq!(heap.pop(), Some(3));
/// assert_eq!(heap.pop(), Some(4));
/// assert_eq!(heap.pop(), None);
///
/// // We can also create heaps from arrays.
/// let mut heap = BinaryHeap::from([2, 6, 2]);
///
/// // And heaps can contain duplicate items.
/// assert_eq!(heap.pop(), Some(2));
/// assert_eq!(heap.pop(), Some(2));
///
/// assert_eq!(heap.len(), 1);
/// ```
///
/// # Runtime complexity
///
/// | Operation              | Runtime Complexity |
/// | ---------------------- | ------------------ |
/// | [`BinaryHeap::insert`] | *O*(log *n*)       |
/// | [`BinaryHeap::peek`]   | *O*(1)             |
/// | [`BinaryHeap::pop`]    | *O*(log *n*)       |
/// | [`BinaryHeap::from`]   | *O*(*n*)           |
#[derive(Clone)]
pub struct BinaryHeap<T> {
    items: Vec<T>,
}

impl<T> BinaryHeap<T> {
    /// Creates an empty binary heap.
    pub fn new() -> Self {
        BinaryHeap { items: Vec::new() }
    }

    /// Inserts an item into the binary heap.
    ///
    /// # Example
    /// ```
    /// use rust_dsa::BinaryHeap;
    ///
    /// let mut heap = BinaryHeap::new();
    /// heap.insert(4);
    /// heap.insert(1);
    /// heap.insert(3);
    ///
    /// assert_eq!(heap.len(), 3);
    /// assert_eq!(heap.peek(), Some(&1));
    /// ```
    pub fn insert(&mut self, item: T)
    where
        T: Ord,
    {
        self.items.push(item);
        self.bubble_up(self.len() - 1);
    }

    /// Returns the smallest item in the binary heap, or `None` if the heap is empty.
    ///
    /// # Example
    /// ```
    /// use rust_dsa::BinaryHeap;
    ///
    /// let mut heap = BinaryHeap::from([2, 1]);
    /// assert_eq!(heap.peek(), Some(&1));
    ///
    /// heap.clear();
    /// assert_eq!(heap.peek(), None);
    /// ```
    pub fn peek(&self) -> Option<&T> {
        self.items.get(0)
    }

    /// Removes and returns the smallest item in the binary heap, or returns `None`
    /// if the heap is empty.
    ///
    /// # Example
    /// ```
    /// use rust_dsa::BinaryHeap;
    ///
    /// let mut heap = BinaryHeap::from([4, 1, 3]);
    ///
    /// assert_eq!(heap.pop(), Some(1));
    /// assert_eq!(heap.pop(), Some(3));
    /// assert_eq!(heap.pop(), Some(4));
    /// assert_eq!(heap.pop(), None);
    /// ```
    pub fn pop(&mut self) -> Option<T>
    where
        T: Ord,
    {
        if self.is_empty() {
            None
        } else {
            let min = self.items.swap_remove(0);
            self.bubble_down(0);
            Some(min)
        }
    }

    /// Returns the length of the binary heap.
    ///
    /// # Example
    /// ```
    /// use rust_dsa::BinaryHeap;
    ///
    /// let mut heap = BinaryHeap::from([1, 2, 3]);
    /// assert_eq!(heap.len(), 3);
    ///
    /// heap.clear();
    /// assert_eq!(heap.len(), 0);
    /// ```
    pub fn len(&self) -> usize {
        self.items.len()
    }

    /// Returns `true` if the binary heap is empty.
    ///
    /// # Example
    /// ```
    /// use rust_dsa::BinaryHeap;
    ///
    /// let mut heap = BinaryHeap::from([1, 2]);
    /// assert!(!heap.is_empty());
    ///
    /// heap.clear();
    /// assert!(heap.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Clears the binary heap.
    ///
    /// # Example
    /// ```
    /// use rust_dsa::BinaryHeap;
    ///
    /// let mut heap = BinaryHeap::from([1, 2]);
    ///
    /// heap.clear();
    /// assert!(heap.is_empty());
    /// ```
    pub fn clear(&mut self) {
        self.items.clear()
    }

    /// Repeatedly swaps the node at `index` with its parent until the heap
    /// invariant is restored.
    fn bubble_up(&mut self, mut index: usize)
    where
        T: Ord,
    {
        while index > 0 {
            let parent = (index - 1) / 2;
            if self.items[parent] > self.items[index] {
                self.items.swap(parent, index);
                index = parent;
            } else {
                break;
            }
        }
    }

    /// Repeatedly swaps the node at `index` with one of its children until the heap
    /// invariant is restored.
    fn bubble_down(&mut self, mut index: usize)
    where
        T: Ord,
    {
        loop {
            // find the index of the smallest child
            let child1 = 2 * index + 1;
            let child2 = child1 + 1;
            let mindex = if child2 >= self.len() || self.items[child1] < self.items[child2] {
                child1
            } else {
                child2
            };

            // if the item at `index` is greater than its smallest child, swap the two
            if mindex < self.len() && self.items[index] > self.items[mindex] {
                self.items.swap(index, mindex);
                index = mindex;
            } else {
                break;
            }
        }
    }
}

impl<T> IntoIterator for BinaryHeap<T>
where
    T: Ord,
{
    type IntoIter = IntoIter<T>;
    type Item = T;
    /// Creates an iterator that iterates over the heap's items in ascending order.
    ///
    /// # Example
    /// ```
    /// use rust_dsa::BinaryHeap;
    ///
    /// let heap = BinaryHeap::from([4, 2, 3, 1]);
    ///
    /// for x in heap {
    ///     // prints 1, 2, 3, 4
    ///     println!("{x}");
    /// }
    /// ```
    fn into_iter(self) -> IntoIter<T> {
        IntoIter { heap: self }
    }
}

pub struct IntoIter<T> {
    heap: BinaryHeap<T>,
}

impl<T> Iterator for IntoIter<T>
where
    T: Ord,
{
    type Item = T;
    fn next(&mut self) -> Option<Self::Item> {
        self.heap.pop()
    }
}

impl<T> FromIterator<T> for BinaryHeap<T>
where
    T: Ord,
{
    /// Uses the [heapify algorithm](https://johnderinger.wordpress.com/2012/12/28/heapify/)
    /// to create a [BinaryHeap] in *O*(*n*) time.
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> {
        let mut heap = BinaryHeap {
            items: iter.into_iter().collect(),
        };
        for i in (0..heap.len()).rev() {
            heap.bubble_down(i);
        }
        heap
    }
}

impl<T, const N: usize> From<[T; N]> for BinaryHeap<T>
where
    T: Ord,
{
    /// Uses the [heapify algorithm](https://johnderinger.wordpress.com/2012/12/28/heapify/)
    /// to create a [BinaryHeap] in *O*(*n*) time.
    fn from(array: [T; N]) -> BinaryHeap<T>
    where
        T: Ord,
    {
        array.into_iter().collect()
    }
}

impl<T> Default for BinaryHeap<T> {
    fn default() -> BinaryHeap<T> {
        BinaryHeap::new()
    }
}