rust_dsa/binomialheap.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
/// A [priority queue](http://en.wikipedia.org/wiki/Priority_queue) implementation
/// backed by a [binomial heap](https://en.wikipedia.org/wiki/Binomial_heap).
///
/// [`BinomialHeap::pop`] removes the *smallest* item.
///
/// **TODO: implement** `change_value`**.**
///
/// # Example
///
/// ```
/// use rust_dsa::BinomialHeap;
///
/// // First, we create a new heap.
/// let mut heap = BinomialHeap::new();
///
/// // Then we can add items in any order.
/// heap.insert(4);
/// heap.insert(1);
/// heap.insert(3);
///
/// // We can peek at the minimum item.
/// assert_eq!(heap.peek(), Some(&1));
///
/// // And pop them off in ascending order.
/// assert_eq!(heap.pop(), Some(1));
/// assert_eq!(heap.pop(), Some(3));
/// assert_eq!(heap.pop(), Some(4));
/// assert_eq!(heap.pop(), None);
///
/// // We can also create heaps from arrays.
/// let mut heap = BinomialHeap::from([2, 6, 2]);
///
/// // And heaps can contain duplicate items.
/// assert_eq!(heap.pop(), Some(2));
/// assert_eq!(heap.pop(), Some(2));
///
/// assert_eq!(heap.len(), 1);
///
/// // We can also join two heaps together.
/// let mut heap: BinomialHeap<_> = "xbz".chars().collect();
/// let other: BinomialHeap<_> = "ayc".chars().collect();
/// heap.extend(other);
///
/// assert_eq!(heap.len(), 6);
/// assert_eq!(heap.pop(), Some('a'));
/// assert_eq!(heap.pop(), Some('b'));
/// assert_eq!(heap.pop(), Some('c'));
/// assert_eq!(heap.pop(), Some('x'));
/// assert_eq!(heap.pop(), Some('y'));
/// assert_eq!(heap.pop(), Some('z'));
/// assert_eq!(heap.pop(), None);
/// ```
///
/// # Runtime complexity
///
/// | Operation | Runtime Complexity |
/// | ------------------------ | ------------------ |
/// | [`BinomialHeap::insert`] | *O*(log *n*) |
/// | [`BinomialHeap::peek`] | *O*(log *n*) |
/// | [`BinomialHeap::pop`] | *O*(log *n*) |
/// | [`BinomialHeap::extend`] | *O*(log *n*) |
/// | [`BinomialHeap::from`] | *unclear...* |
pub struct BinomialHeap<T> {
nodes: Vec<Node<T>>,
}
impl<T> BinomialHeap<T> {
/// Creates a new heap.
pub fn new() -> BinomialHeap<T> {
BinomialHeap { nodes: Vec::new() }
}
/// Creates a heap with a single element.
pub fn singleton(value: T) -> BinomialHeap<T> {
BinomialHeap {
nodes: vec![Node::new(value)],
}
}
/// Inserts a value into the heap.
///
/// # Example
/// ```
/// use rust_dsa::BinomialHeap;
///
/// let mut heap = BinomialHeap::new();
/// heap.insert(4);
/// heap.insert(1);
/// heap.insert(3);
///
/// assert_eq!(heap.len(), 3);
/// assert_eq!(heap.peek(), Some(&1));
/// ```
pub fn insert(&mut self, value: T)
where
T: Ord,
{
let other = BinomialHeap::singleton(value);
self.extend(other);
}
/// Returns the smallest item in the heap, or `None` if the heap is empty.
///
/// # Example
/// ```
/// use rust_dsa::BinomialHeap;
///
/// let mut heap = BinomialHeap::from([2, 1]);
/// assert_eq!(heap.peek(), Some(&1));
///
/// heap.clear();
/// assert_eq!(heap.peek(), None);
/// ```
pub fn peek(&self) -> Option<&T>
where
T: Ord,
{
if self.is_empty() {
None
} else {
let mindex = self.get_mindex();
Some(&self.nodes[mindex].value)
}
}
/// Removes and returns the smallest item in the heap, or returns `None`
/// if the heap is empty.
///
/// # Example
/// ```
/// use rust_dsa::BinomialHeap;
///
/// let mut heap = BinomialHeap::from([4, 1, 3]);
///
/// assert_eq!(heap.pop(), Some(1));
/// assert_eq!(heap.pop(), Some(3));
/// assert_eq!(heap.pop(), Some(4));
/// assert_eq!(heap.pop(), None);
/// ```
pub fn pop(&mut self) -> Option<T>
where
T: Ord,
{
if self.is_empty() {
None
} else {
let mindex = self.get_mindex();
let Node { value, children } = self.nodes.remove(mindex);
let other = BinomialHeap { nodes: children };
self.extend(other);
Some(value)
}
}
/// Inserts the elements from annother heap into this one.
///
/// # Example
/// ```
/// use rust_dsa::BinomialHeap;
///
/// let mut heap = BinomialHeap::from([3, 4, 5]);
/// let other = BinomialHeap::from([1, 2]);
///
/// heap.extend(other);
///
/// assert_eq!(heap.len(), 5);
///
/// assert_eq!(heap.pop(), Some(1));
/// assert_eq!(heap.pop(), Some(2));
/// assert_eq!(heap.pop(), Some(3));
/// assert_eq!(heap.pop(), Some(4));
/// assert_eq!(heap.pop(), Some(5));
/// assert_eq!(heap.pop(), None);
/// ```
pub fn extend(&mut self, mut other: BinomialHeap<T>)
where
T: Ord,
{
let mut self_nodes: Vec<_> = (0..usize::BITS).map(|_| None).collect();
let mut other_nodes: Vec<_> = (0..usize::BITS).map(|_| None).collect();
for node in self.nodes.drain(..) {
let degree = node.degree();
self_nodes[degree] = Some(node);
}
for node in other.nodes.drain(..) {
let degree = node.degree();
other_nodes[degree] = Some(node);
}
let mut nodes = Vec::new();
let mut carry = None;
for i in 0..(usize::BITS as usize) {
match (self_nodes[i].take(), other_nodes[i].take(), carry.take()) {
(None, None, None) => {}
(None, None, Some(c)) => nodes.push(c),
(None, Some(o), None) => nodes.push(o),
(None, Some(o), Some(c)) => carry = Some(o.join_with(c)),
(Some(s), None, None) => nodes.push(s),
(Some(s), None, Some(c)) => carry = Some(s.join_with(c)),
(Some(s), Some(o), None) => carry = Some(s.join_with(o)),
(Some(s), Some(o), Some(c)) => {
carry = Some(s.join_with(o));
nodes.push(c);
}
}
}
nodes.reverse();
self.nodes = nodes;
}
/// Returns the number of elements in the heap.
///
/// # Example
/// ```
/// use rust_dsa::BinomialHeap;
///
/// let mut heap = BinomialHeap::from([1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// assert_eq!(heap.len(), 9);
///
/// heap.pop();
/// assert_eq!(heap.len(), 8);
///
/// heap.clear();
/// assert_eq!(heap.len(), 0);
/// ```
pub fn len(&self) -> usize {
let mut len = 0;
for child in &self.nodes {
len += 1 << child.degree();
}
len
}
/// Returns `true` if the heap is empty.
///
/// # Example
/// ```
/// use rust_dsa::BinomialHeap;
///
/// let mut heap = BinomialHeap::from([1, 2]);
/// assert!(!heap.is_empty());
///
/// heap.clear();
/// assert!(heap.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.nodes.is_empty()
}
/// Clears the heap.
///
/// # Example
/// ```
/// use rust_dsa::BinomialHeap;
///
/// let mut heap = BinomialHeap::from([1, 2]);
///
/// heap.clear();
/// assert!(heap.is_empty());
/// ```
pub fn clear(&mut self) {
self.nodes.clear()
}
fn get_mindex(&self) -> usize
where
T: Ord,
{
let mut mindex = 0;
for i in 1..self.nodes.len() {
if self.nodes[i].value < self.nodes[mindex].value {
mindex = i;
}
}
mindex
}
#[allow(dead_code)]
fn meets_invariant(&self) -> bool
where
T: Ord,
{
if let Some(false) = self.nodes.get(0).map(Node::meets_invariant) {
return false;
}
for i in 1..self.nodes.len() {
if self.nodes[i - 1].degree() <= self.nodes[i].degree() {
return false;
}
if !self.nodes[i].meets_invariant() {
return false;
}
}
true
}
}
impl<T> IntoIterator for BinomialHeap<T>
where
T: Ord,
{
type IntoIter = IntoIter<T>;
type Item = T;
/// Creates an iterator that iterates over the heap's items in ascending order.
///
/// # Example
/// ```
/// use rust_dsa::BinomialHeap;
///
/// let heap = BinomialHeap::from([4, 2, 3, 1]);
///
/// for x in heap {
/// // prints 1, 2, 3, 4
/// println!("{x}");
/// }
/// ```
fn into_iter(self) -> IntoIter<T> {
IntoIter { heap: self }
}
}
pub struct IntoIter<T> {
heap: BinomialHeap<T>,
}
impl<T> Iterator for IntoIter<T>
where
T: Ord,
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
self.heap.pop()
}
}
impl<T> FromIterator<T> for BinomialHeap<T>
where
T: Ord,
{
/// Creates a heap from an iterator.
///
/// ```
/// use rust_dsa::BinomialHeap;
///
/// let mut heap: BinomialHeap<i64> = (0..10_001).map(|_| rand::random()).collect();
///
/// let mut prev = heap.pop().unwrap();
///
/// for _ in 0..10_000 {
/// assert!(&prev <= heap.peek().unwrap());
/// prev = heap.pop().unwrap();
/// }
///
/// assert_eq!(heap.pop(), None);
/// ```
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinomialHeap<T> {
let mut heap = BinomialHeap::new();
for value in iter {
heap.insert(value);
}
heap
}
}
impl<T, const N: usize> From<[T; N]> for BinomialHeap<T>
where
T: Ord,
{
fn from(array: [T; N]) -> BinomialHeap<T>
where
T: Ord,
{
array.into_iter().collect()
}
}
impl<T> Default for BinomialHeap<T> {
fn default() -> BinomialHeap<T> {
BinomialHeap::new()
}
}
struct Node<T> {
value: T,
children: Vec<Node<T>>,
}
impl<T> Node<T> {
fn new(value: T) -> Node<T> {
Node {
value,
children: Vec::new(),
}
}
fn degree(&self) -> usize {
self.children.len()
}
fn join_with(mut self, mut other: Node<T>) -> Node<T>
where
T: Ord,
{
debug_assert!(self.degree() == other.degree());
if other.value < self.value {
other.children.insert(0, self);
other
} else {
self.children.insert(0, other);
self
}
}
#[allow(dead_code)]
fn meets_invariant(&self) -> bool
where
T: Ord,
{
for (i, child) in self.children.iter().rev().enumerate() {
if child.degree() != i {
return false;
}
if child.value < self.value {
return false;
}
if !child.meets_invariant() {
return false;
}
}
true
}
}